SECTION S H/F TRANSMITTERS
 PAGE 52
 PAGE 55

Date of desizgn.
Frequency range
Pover supply - -
Vaives usen.
Approximace distance range
Associated vavemeter
1825.

18,750. 28, $570 \mathrm{ke} / \mathrm{s}$.
5 kn motor altermator
One AT2S.
50 miles (Transmitter fitted on deck).
25 miles (Transmitter fitted below).
rat

fave form	Mothod of producing oscillation.	Naiture of circuit	Grid excitation	Feed	Aerial excitation	High oscillating potentiml electrode.
I. C.W	Self	Tuned circuit bstwesn anode and grid.	Direct inductive.	Series	$\begin{gathered} \text { Matual } \\ \text { inductive } \end{gathered}$	Anode

Type 71 is a single valve H / Γ transmitter. It may be fitted:-
(a) In the second office in conjunction with an M/F set,
(b) In the auxiliary office.
(c) In a separate office ky itself.

The essential difference in each case lies in the power distribution inside the office.
The transmitter used in Type 71 is Transmitter 7t which is usually fitted above the upper deck in a position secure fron gun blast and spray and also as far as possible from necejving aspials of other sets and from rigging and wire stays. In some cases the 7 is fitted below in one of the three offices mentioned above.
Pover Supply. In the second office alternative supplies ame taken from opposite sections of the ring main through separate branch breakers to a ring main $\mathrm{C} O . \mathrm{S}_{\mathrm{c}}$ (57) and thence on to the bus bars (53) on Boand, Fuse, $\hat{3}$ vay. These branch breakors and supply cables are capable of supplying all the W / T sets fitted in the office, but when the set is fitted in an auxiliary office the supply is obtained from the poner boards of the other sets in that office.
Main A C. Suppiy, is provided by a 5 kW motor alternator (5) which is supplied from the bus bars (53) through fuses (31) and is controiled by a Y size autoratic starter (30) (seo page MAY), a motor speed reguiator (23) and altemator field regulator (27). The alternator (20) supplies the primary of the main transfomer (13) (step up 30 ; 1) through fuses (24), an ammoter (22), the magnetic key (21), a D. P. sritich (20) and door contacts (14) (15) (18) (19) on the transmititer box. The fuses (24) have a voltrmeter (2f) comnected across them.
Filament $A C$, supply is provided by a 1 thd motor alternator (41) which is supplied from the bus bars (5A) through fuses (E5) and is controlled by a Z size automatic starter (45) and an altermator field regulator (42). The alternator (41) supplies the primary of the filarent transfomer (34) (step down 5 to ${ }^{1}$ 1) through fuses (40), an ammeter (38), a rheostat (37), one pole of a D P. switch (36) the other pole of which rakes the blower motor cimuit, and a D. Pr switch (35). A voltmeter (39) is sonnected across the fuses (40).

Transmitter 7 H employs a divided cimeuit consisting of the coils (6) and (7) of the flat spiral type, two 1 .jar condensers (8) and (9) and the anode grid capacity of the M2. velve (1). (See Admiralty Handbook of W/T (1921) parragraph 329.) A 10,000 ohm grid leak (12) and an anode choke (11) are provided. The 1 -jar condenser ($?$) is inserted to by-pass R / F current which might othervise bum out the filament. A voltmeter (32) is connected across the filament leads but is actually situm ated below in the W/T office. Ari amneter (10) is provided in the oscillatory circuit. When fitted above decks the aerial consists of a vertical aerial tube (2) and coupling coil (4), an ammeter (5) and a horizontal anrial tube (3). The aerial tubes (2) (3) are about $5^{\prime} 3^{\prime \prime}$ long and have sliding extension tubes $4^{\prime} 3^{\prime \prime}$ long for tuning purposes. When fitted below, the set is comected to the ondinasy second office aerial which is energised at one of its hamonics,

The whole transmitter is housed in two splinter proof steel boxes, one mounted on the top of the other. The walls of the upper box are heavily copper plated, inside and out, to reduce high frequency resistance lossers and the box contains the oscillatory circuit and the coil (4) and arme-w ter (5) of the aerial cimuit. The lower box contains the transformers (12) (34) and biower (53)

Each box has a hinged door camying a door contact controlling a D, P. break in the A.C. supply to the main transiormer (12) Contact (14) has a catch plate (13) across it and contact (15) a morse key (17). Contacts (14) (15) are in the upper door and (18) and (19) in the lover door. The D.C. Auriliary Circuits which consist of the signalling circuit and the blower motor: circuit are fed from fuses (54) and the bus bars (53). The signalling circuit consistis of the bobbin of the magnetic key (21) lamp (53) and the morse key (46) and is comnected to the supply by means of the D.P. switch (47) Remate Control leads are wired in parallel with the morse key (43).

The blower (EX) is controlled by one pole of the D.P. switch (36). The other pole of this switch (33) makes the filament supply to the valve (1) so that the filament cannot be syitched on nithout the blower (5?) being switched on also. On the other hand the blower (E2) can be left munning when the valve is not lit by breaking switch (5) and leaving switch (3) made.
'luning. Open the door of the upper box and close and latch the catch plate (13) to short circuit the door switch (14). A morse key (17) is comected across the other door contact (15)

Disconnect the aemials and tune by ris to the correct wave in the oscillatory circuit, adjusting proportiou of inductance in grid and anode coils (7) (3) to give maximum cument in amneter (10). Usually the anode inductance (3) will be the larger. 130 volts (no load) should be used in the primary circuit as shown in Foltmeter (23).

Connect up the aerials and, with the coupling set to the smallest value ' (809), tune tham for maximum armal cument. If this has altered the radiated frequency, readjust the inductance (4) Increase the aemial coupling to 80° and vary the aerial tuning to see if the mesonance curve has a single peak If two maxima are obtained or mamimum is very flat, coupling mast be re duced until a single shamp peak is obtained, Coupling must then be left fixed and power adjusted by altering the AC.voltage.

When Transmitter 7H is fitted belov, the aerial is not tuned and the aerial coupling has a mone critical effect on the werial cument.

Fig. b

Fig. e
Fig.d

Daice of design:
Fre juency range:-
Power supply:-
Valves used.
$19: 9$
$18,400 \mathrm{kc} / \mathrm{s}$ to $75,000 \mathrm{kc} / \mathrm{sc}$
220 volt mains.
Transmitter. TNT16 for each Transmitter-Receiver box fitted
Master Hodulator. 2 NTI6 (1 in use, 1 alternative)
Hain Modulator. 2 NT16 for each Transmitter-Receiver box fitted.
G2.
2-5
Admiralty Handbook of W/T (1931) paragraph 715.

Associated Wavemeter -
Approximate range in milesi-
Poference -

Trpe $7 / X X$ is a combined transmitter and receiver designed for very high frequencies(V. H/F), The receirer 02 K is dascribed on page $K 3$ of this book. Equivalent circuits of the transmitter and receive: are shown in figures 1_{0} and m,

Type 75X is fitted in certain battleships. Bach set, comprises a control box and two or three transmitter--receiver boxes and these notes describe the arrangement for two transmitterreceiver buxes:

The control box contains the master modulator and main modulator for the tranemitter, the note selector and quench unit for the receiver, the various fuses and switches for controlling the transmitter and receiver, and a main 12 pole 1 way switch(42) (see figures k_{0} and n_{0}) which controls the whole of the II trs: filament and grid bias supplies. The control box is fitted in the auxiliary W/T office.

The transmittermreceiver boxes each contain a transmitter and receiver complete, and a buzzer and key for internal commuication. They are fitted in positions aloft. The transmitter and receiver are screened from each other by a metal screen.

FOTRR SUPPLY.

The power supplies for fype 7EX are shown in figure k The supplies for the transmitting portion are as follows:-

Transmitter laster lodulator, and lifain Fodulator valves. 110 m	250 volts.	Thip's mains.
Transmitter. V'aster lodulator, and Wain Hodulator valves pilament.	e volts.	Patt: 6038A cells.
Hain lodulator valves. Crid bias,	About 15 volts.	Fatt. 4976 cells inert.

H. T. supply is taken from any convenient 220 volt terminals provided fuses are inserted in the suppity leads These terminals are connected, through a pair of fuses (199), to the appropriate terminals on the control box, which are connected to two contacts of the main switch(42) (see figures k, and n;

The 3 volt batteries (187) (188)are duplicated and housed in a special battery cupboard with the receiving batteries gither battery can be comected to the control box by their respective switches (155^{7}) (159). The 8 volt terminais of the control box are connected to two contacts of the main switch (42)。

The 220 volt and the 8 volt negative leads are made common inside the control box.
The main modulator grid bias battery(186) is connected direct to two contacts of the main switch (42). This batitery is housed in a position near the control box.

> TRANSMITTER 7RY.

Mave Lorm	Method of producing oscillation	Nature of circuit	crid excitation	Feed	Aerial excitation	tifi oscillating potential electrode
I. C. H.	Self	Tuned oircuit between anode and filament.	Cirect capacitive	Series	Mutual inductive	Anode

As the circuits of each transmitter are identical, and the $H_{0} H_{0}$ and filament supplies for each are paralleled from certain switches, the circuit and switches for transmitter No. 1 only will be described.
Ho T. supply. The H. Me supply is taken from the 220 volt contacts of the main switch (42). A smoothing condenser (193) is connected across the supply (see figure an).

The switch (42) connects the Ho To supply to the morse key (122) and condenser (12A). A key condenser (194) is connected across the morse key (123).

When the morse key (123) is pressed the H_{0} To positive supply is completed, through one half of a $1 / 1$ transformer (122), to the switch (187). The swatch (137) connects it through a.
fuse (179) to the centre of the anode inductance (118).
The morse key (115) forms a break in the circuit, but is only used for tuning purposes, (see under "Puning" Fage 99) and is normally clamped down

Pinament Supply The filanent supply is from the two 8 volt contarts of the main switch(42) which manere the supply to the switches (173) (1775). As these switches are mechanically linked to the H.T smitoh (1E7) the oprasion of making ther connects the H. T, and filament supplies to the transmitton. The switch (27, (see figure h) is also linked to the switches (137) (173) (173) and the filament supply to the mais modulator vaives (104) (105), is therefore completed at the same time. For transmitter No 2, the switches (138) (174) (177) and (28) are linker together, and the H. T. and filament. supplies of that transoitrer and the filament supply to the main modulator valves (106) (107) are tiarefore rade simuitaneously. A 1 'Th ohm rhoostat (120) is connected in the filament supply to adjust the filament cumment of Eoth valves (140), (101).

A switoh (197) and ammeter! (198) ane zomected in the positive filament supply. The switch (197) has four positions "short", 1, 2, and "t.otid" and, if moved to any position, when released, is netumed to the "short" position ty a spring, which is therefore its nomal position. By switching it to positions 1 or 2 the anneter (193) is connedted in the filament supply of No 1 or No. 2 transmition As the vaives (100) $(10 \mathrm{j})$ each take 0 o amp , the ammeter resding in the 1 or 2 position should be 12 arpps. It will be noted therefore that the oporator at the control box can discover if any transmitter valve is burnt out, without having to go to the aloft position. In the "total" position the total filament current taken ky all transmitters is indicated.
Oscillatory cimuit. A "Push-Pull" circuit is employed. (Ssee Admiraity Handkook of W/T (1331) paragraph 638 and figure 339). It consists of two NPIB valves (100) (101) an inductance (110) with a variakle condenser (117) connected across it. The valves (100) (101) are conneoted in push-pull, the +1 T. supply being vaken to the centre of the coil (11a). The coil (118) is connected betmeen the anodes, and the condenser (117) is used for tuning, and is adjusted ky a slow moving dial fitted on the front of the panel. An inductance (118) is connected cetween the grids of the valves (100) (101) with a 5000 ohm grid leak (119) connected betreen the centre point of the coil (118) and the pentron HESntive filament supply. The coils (115) and (118) are of the plug-in type. Two paims of coils are suppiied. One pais cover a frequency range of approximately $56,300 \mathrm{kc} / \mathrm{s}$ to $75,000 \mathrm{kc} / \mathrm{s}$ and are marked $A A$ for the aivde coil (i10) and AI for the grid coil (118). The other pair cover a frequency range of $48: 400 \mathrm{kc} / \mathrm{s}$, to $57,700 \mathrm{kc} / \mathrm{s}$, and are marked $B A$ and By for annde and grid respective... …
Aortit cimpit. The weriaj circuit consists of a 4 ft , rod aerial (110), condenser (111), two coils (112) (113) and ameter(114), comnected in series. The soils (112; (112) consist of one tum sach, and move acmss each end of the coil (1.13) coupling the oscillatory cincurt to the aemial cimuit. The anount of coupling is adjusted ky a handre fitted on the front of the panel of the transmitter. One ond of the coic (113) is connected through a shunted thermal ammeter (114) to earth, and one end of the cuil (112) thaugh the vamizle condenser (-il) to the amrial. The oundenser (111) is used to tune the derial circuit to any required frequency and is adjusted ky a slon moving dial on the front of the panel.
Sighaling, There are no separate signaling cimults. The morse sey (123) is connected direct in one lead of the H. T. supply to the transmitter and main and master modulators. The set can ke operated from the transmitier hox position ky the morse key (i15) as explained under whaning", or remote concrolled ky the monse keys (IS4) (130) and telephones (see figure n). The switohes (160) (131) connect either of the remote convrol telephones in parallel with the operator's, and switches (100) (10a) conanent the respective monse keys (124) (135) in parallel with the morse key (123). The telephone and key switches controlling izil merote control position, ane mechanically linked,

TRANSMITTER 7RX (CONTD。) \&
Tuning. As the tuning operation for each transmitter is the same, it will ke assumed in these notes that transmitter No. 1 is keing tuned. Unlock the morse key (115) in th transmitter kox, and connect a pair of telephones to the transfomer (20) (see figure n) first removing the link. Lock the morse key (123) in the control kox and make the main switch (42), Make the H. T switeh (137). This switch is linked to switches (173) (173) and (27), and the filament supplies to the main modulator and transmitter are therefore made at the same time Adjust the filament current of the transmitting valves (100) (101) ky the rheostat (120) ; a portable ammeter should ke used for this. Adjust the megostat (33) (see figure n) to the "0" position, and make the switch (30), which connects the H. T. to the receiven The switches (30) and (E5) are mechanically linked, so that as the switeh (30) is made for the receiver H T the switch(55), completes the receiver filament supply. Insert the pair of coils (116) (118) covering the fre quency range required, close the doors and lightly couple the 32 wavemeter to the aerial (110). Press the key (215) and adjust the oseillatory cincuit to the required feequency with the condenser(117) Adjust the aerial tuning condenser (111) to give a maximum current reading in the aerial armeter(114) The aerial coupling ketween the coils (112) (113) and (113) should be as loose as possible consistent, with good radiation Thne the receiver for maximum signals. The condensers (111) (117), aerial coupling controls and morse key (115) should now be locked, the telephones remored and the transfomer (20) ajain shorted ky the link. To operate the set on any future occasion it is now only necessary to make the appropriate transmitter and receiver $H . T$. and filament supply switches, and the main switch (42) in the control kox, and use the morse key (123) - A kuzzer (195) and key (190) are fitited in a special kox underneath each trans. mitter-receiver kox and are used for communication ketween the operator at the transmitter-receiver box and the operator at the control kox in the Auxiliary W/T office. The telephone transformer (20) is aiso fitted in this box.

MASTER MODULATOR.

Method of producing oscillation	Nature of circuit	Srid excitation	Feed	High oscillating pot ntial electrode
Self	Tuned circuit retween anode and grid.	Direct inductive	Series	Anode.

The master modulator circuit is of the divided type (see Admiralty Handrook of W/T (1931) paragraph 629). "Choke control" modulation is employed (see Admiralty Handcook of W / T (1931) paragraphs 715 and 672).

The master modulator is fitted with two NT1 $\begin{gathered}\text { valves (108) (109), one keing an altemative }\end{gathered}$ to the other. If the valve in use becomes defective the other can imnediately be switched into the circuit ky a 3 pole C. $Q . S$ (134). This switch changes over the anode, grid and filament circuits, In these notes it will be assumed that the valve (108) is in use, and the change note switch (43) made to "suldivisional". The circuit is then as shown in figure f.
H., T., Supply. The 甘. T. supply is from the 220 volt contacts of the main switch (42) to one contact of the change note switch (42). A 5,000 ohm resistance (125) is connected in the positive supply to reduce the 220 volts to approximately 100 volts. The monse key (123) is connected in the supply to make and kreak the circuit for signalling purposes. The change note switch (43) connects the d. T. supply to the anode of the valve(108) through the tuning coils (127) or (128) depending on the modulating frequency required as described under "Oscillatory circuit." ${ }^{\text {" }}$
Filament Supply. The filanent supply is from the 8 volt contacts of the main switch (42). A 3.3 ohn resistance (135) is connected in the supply between the switches (42) and (134), to reduce the 8 volt supply to the 3 volts required ky the NT18 valve (108)
Oscillatory circuit. The oscillatory circuit consists of the coils (127) (130), two mierofarad condenser (132) and a 40 jar condenser (152) connected betweon the anode and grid of the valve (108). Audio frequency oscillations are generated in this circuit. The coils (127) (130) (149) ane coupled, and fitted in one container as a transformer. The coil (149) which is connected ketween grid and filament of the main modulator valves (104) (105) (103) (107) (see figure h) is coupled to the coil (130), and has induced across it, potential variations at the frequency of the master modulator oscillatory circuit These potential variations are therefore iroposed ketveen grid and filament on the main modulator vaives (104) to (107) and cause the anode cument of these valves to vary at the same frequency.

fige

MASTER MODULATOR (CONTD。)

As explained on page $K 3$, two modulation frequencies (1000 and 1400 cycles) are used. The change inve switch (43) connects sither the transformer (127) (130) (149) or the transformer (128) (150) (151) in the tuned circuit of the master modulator and also changes over condensers (44) (43) and (45) (4) in the grid circuit of the note selector (see figure n.)

The transfommer (127) (130) (149) and the 40 jar condenser (152) tune to 1000 cycles, and the ovher transformer (128) (150) (151) and the same condenser to 1400 cycles.

It will be noted that as the transmitter modulating frequency is altared, so the receiv. ing instruments are adjusted to correspond.
Tuning the iron cores of the transformers have an adjustable air gup which can ke adjusted ky the knunler head (210) on the tops of the transformers. They are accurately tuned and adjusted and the adjustments locked kefore leaving Signal School.

Tuning forks of the correct frequencies required, (1000 and 1400 cycles) are supplied, and if it is necessary to retiune, the following method is employed.

Unlock the adjustments, put the change note switch (43) to the position for the trans former (127) (130) (149) or (128) (150) (151) according to the frequency required, and connect one leard only of a pair of telephones to the terminal mavied "Modulator Anodes" on this transformer.

Nake the main switch (42) for the H. T. and filament supplies and complete the H.T. supply by pressing the key (123). A note will now te heard in the telephones. Strike the appropriate tuning fork and hold near the telephones. Beats will ke set up at a frequency comesponding to the difference ketween the oscillation frequency of the tuning fork and the oscillatory circuit. Adjust the knurled head (210) on the transformer until the frequency teats eatirely disappear. The cincuit is then in tune with the tuning fork. The adjustment should then be locked again.

Fic. g.

MAIN MODULATOR.

The main modulator consists of two pairs of NT16 valves (104) (105) (103) (107) connected in parallel. One pair is for use with each transmitter-neceiver kox. A tuned ccil (149) or (151) (depending on the position of the change note switch (43)) is connected ketween grid and filament of the valves and coupled to the tuned circuit of the master modulator. A grid kias kattery (180) is included in the efrcuit.
H. T. Supply. The H. T. supply is taken from the 220 volt contacts of the main switch (42) through one half of the transformer (122) to the anodes of the valves (104) (105) (108) (107). A 1.5 amp fuse (153) (154) (155) (153) is connected in the H. Th. supply to each valve.

Filament Supply. The filament supply is from the 8 volt contacts of the main switch (42) with 3.3 ohm resistances (141) (142) (143) (144) connected in each valve supply, to reduce the voltage to the 3 volts required for NMB valves.

The filament supply is so amanged that either pair of valves (104) (105) or (103) (107) can ke switched into use ky their respective switches (27) and (28).

As mentioned kefore and shown in figure h, the switches (27) and (28) are linked to the H. T. and filament supply switches of the transmitters. The switch (27) to No. 1 transmitter and the switch (28) to $N \mathrm{No} 2$ transmitter. Thus the operator is able to tring into use at once either or both the transmitters with their modulating valves.

Fig.i

BATTERY AND CHARGING ARRANGEMENTS.

Duplicate 96 volt E. T. katteries (184) (185), 8 volt katteries (187) (188) and 4 volt katteries (77) (78) are supplied and housed in a special battery cupcoard.

The 96 volt kattery supplies the H_{0} T. for the note selector and the 72 volts H.T. for the receiver valves. The 8 volt lattery supplies all the valve filaments of the transmitting units and the receiver quench unit. The 4 volt kattery supplies the valve filaments of the note selector and receiver. The grid tias catterisa, (180) for the master modulator and (209) for the note selector, are inert cells and are placed in a convenient position near the control kox. The 98, 8 and 4 volt catteries are connected to a special change-discharge board and are charged as follows.

The 98 volt katteries (184) (185) are charged from the 220 volt mains, the supply teing con trolled ky the D.p.switch (200). A pair of 3 amp fuses (159) fitted on the changemdischarge koari, are connected in the supply. A $2 \frac{1}{2}$ e.p. resistance lamp (191) is connected in the circuit to give the necessary charying cumpent. An additional lamp can ke connected in parallel ty the switch (190). The armeter (189) indicates the eharging cument. The charge-discharge switches (182) (183) are four pole, two way switches, two poles only are used to connect the kattery to charge and three to dism charge. The katteries may ke charged together or singly

Fig. ℓ

Fic. m.

Type 75
Chief ifferance - uses smpersmic molulation so
 Master modultar valves in Puok pull.
Mam
Traumiter m N suritch aprle
Recewer
Morulatar cos
$\left\{\begin{array}{l}3 p o l e s \text { fir morulation } \\ 2 \text { for apporpecite quench mint } \\ \text { h/tor recewier. }\end{array}\right.$
Single Remite antiol entrolfortay

